GC-MS/MS Approaches for Chlorinated POPs Analysis: What's Next after Dioxins and Furans. Validation and Comparative Data Evaluations Speaker: Bharat Chandramouli, SGS-AXYS

> Webinar Starts at 11:45 am Eastern Daylight Time

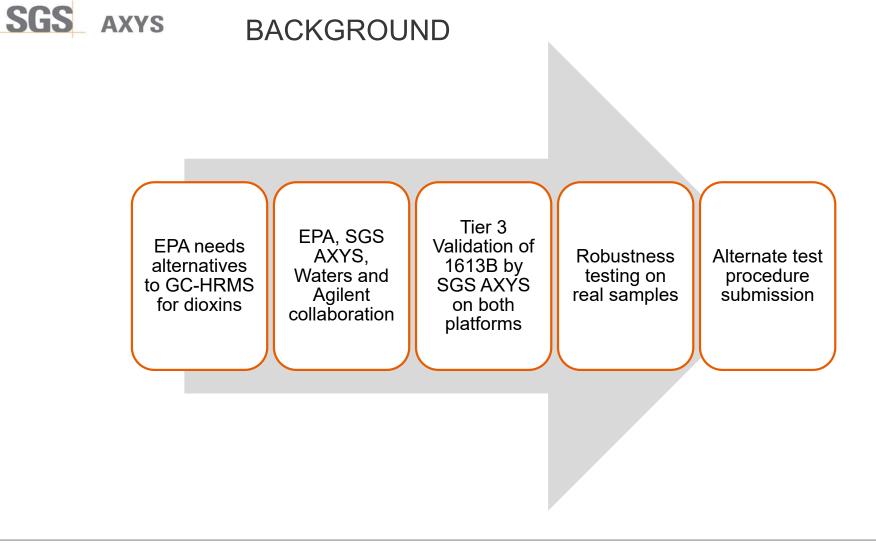
- > Daylight
- > Sound will be on your computer unless you choose to call in.
 - To "Call In", click on Communicate then Audio Connection and choose to use "Call In".
 - Be sure to enter your ID number when you call or it will duplicate you.
- > Contact Suzanne or Ilona with any difficulties.
 - <u>suzanne.rachmaninoff@nelac-institute.org_or_ilona.taunton@nelac-institute.org</u>

Meeting Mechanics

This session is being recorded!

Meeting Mechanics

- Phone lines and computer sound are muted when you join the call. Look for the Q&A feature in Webex and type in a Q&A question at any time during the presentation. Choose to send the question to All Panelists. Time permitting, there will be a Q&A session at the end of each presentation.
- If you have technical issues during the presentations, please use Chat to connect with TNI Training.


GC-MS/MS Approaches for Chlorinated POPs Analysis: What's Next After Dioxins and Furans. Validation and Comparative Data **Evaluation**

SGS AXYS

Bharat Chandramouli, PhD – bharat.chandramouli@sgs.com

https://linkedin.com/in/BharatChandramouli

SGS AXYS DEVELOPMENT OF A METHOD FOR PCDD/F ANALYSIS BY GC-MS/MS

- Verify operating parameters: Instrument set up and control, MRM transitions, product ions ratios
- Confirm QC criteria that are not HRMS-specific, e.g. sensitivity, linearity
- Adapt HR-specific QC Protocols to MS/MS e.g. detector specificity and stability (mass resolution and lock mass) monitoring, qualitative identification criteria
- Investigate potential interferences PCBs, chlorodiphenyl ethers

SGS AXYS THE INSTRUMENT: WATERS APGC-XEVO TQ-XS

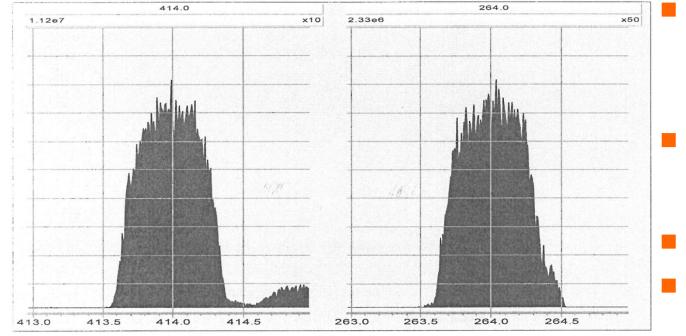
Lead development scientist Xinhui Xie with the Waters APGC-Xevo TQ-XS

GC: Atmospheric pressure chemical ionization source

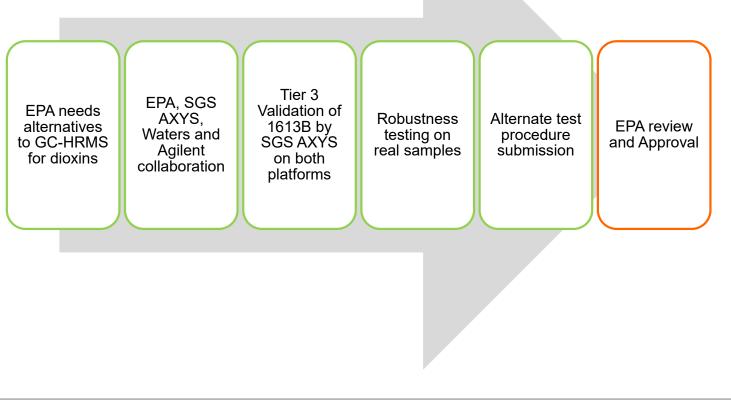
- Low energy (20 to 30 V collision energy)
- Less fragmentation
- More sensitivity and selectivity than an El source

MS/MS: Xevo TQ-XS

- High sensitivity
- Large linear range
- Tandem quadrupole detection system optimizes selectivity


SGS AXYS USE OF A REFERENCE COMPOUND TO MONITOR DETECTOR RESPONSE STABILITY

- To detect suppression of detector response by sample matrix – replacement for HRMS lock mass monitoring requirement
- Bleed a reference compound into the detector system throughout run and monitor its response. Expect it to be constant
- Select PFTBA (the tuning compound). Large number of masses available
- Select 414.0 > 264.0 transition due to good response and appropriate mass range. Monitor 264.0 response continuously

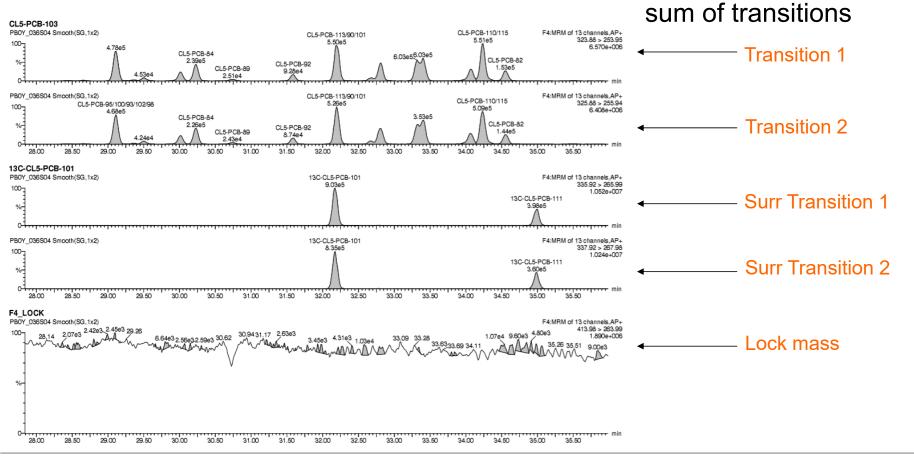

SGS AXYS MASS RESOLUTION AND MASS ACCURACY

- Demonstrate unit mass resolution and mass accuracy on an on-going basis.
- How: PFTBA transition 414.0 > 264.0. Scan MS1 and MS2
- Every 12 hours
 - Criteria for resolution: resolution of 414.0 from 415.0 and peak width at base is 1 ± 0.2 amu

SGS AXYS

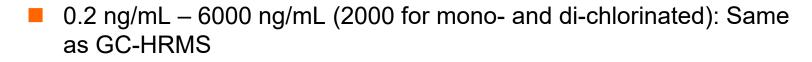
DIOXIN ATP STATUS (AUGUST 2020)

SGS AXYS STUDY OBJECTIVES


- Build on our 2019 development and validation alternate method on for PCDD/PCDF using tandem quadrupole mass spectrometry (MS/MS) rather than high resolution mass spectrometry (HRMS)
- Validate alternate procedure to EPA 1668
- Validate alternate procedure for high-sensitivity chlorinated pesticides

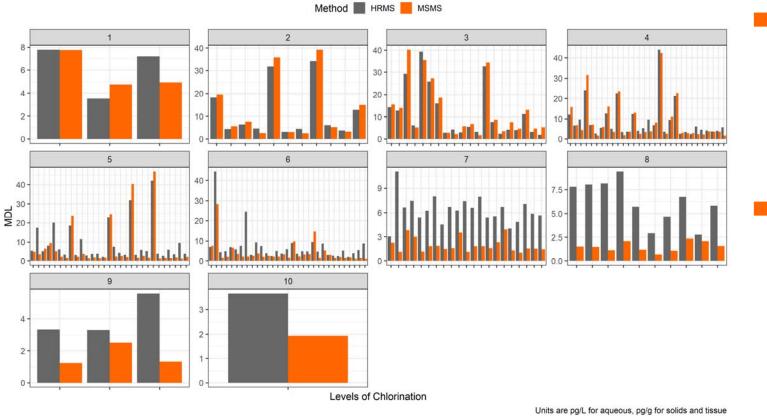
SGS AXYS PCB METHOD DEVELOPMENT AND VALIDATION

- No changes needed to lab extraction and cleanup procedures
- No changes on GC acquisition protocols as validated for EPA 1668
- All new MS-MS instrument protocol development for primary and secondary precursor and products
- Typical validation package with calibration, Initial
 Demonstrations of Capability,
 MDLs and real sample analysis
- Accreditation with NELAP and ISO-17025


Primary MRM Secondary MRM Primary MRM Secondary MRM Transition Transition Compound Transition Precursor **Transition Product Transition Precursor Transition Product** (Quan Trace) (Target Trace) lon lon lon lon мсв $C_{12}H_{9}Cl(m)$ $C_{12}H_{9}(m)$ 188.0 > 153.0 C₁₂H₉³⁷Cl (m+2) $C_{12}H_{9}(m)$ 190.0 > 153.0 DiCB $C_{12}H_8CI_2$ (m) $C_{12}H_{8}(m)$ 222.0 > 152.1 C12H835Cl37Cl (m+2) $C_{12}H_{8}(m)$ 224.0 > 152.1 TrCB $C_{12}H_7Cl_3$ (m) $C_{12}H_7CI(m)$ 256.0 > 186.0 C₁₂H₇³⁵Cl₂³⁷Cl (m+2) $C_{12}H_7CI(m)$ 258.0 > 186.0 TeCB $C_{12}H_{6}CI_{4}(m)$ $C_{12}H_{6}Cl_{2}(m)$ C₁₂H₆³⁵Cl₃³⁷Cl (m+2) C12H635CI37CI (m+2) 291.9 > 222.0 289.9 > 220.0 PeCB $C_{12}H_{5}CI_{5}(m)$ $C_{12}H_{5}CI_{3}$ (m) 323.9 > 254.0 C12H535CI437CI (m+2) C₁₂H₅³⁵Cl₂³⁷Cl (m+2) 325.9 > 255.9 HxCB C12H435CI537CI (m+2) C12H435CI337CI (m+2) 359.8 > 289.9 $C_{12}H_4CI_6(m)$ $C_{12}H_4CI_4(m)$ 357.8 > 287.9 НрСВ C12H335CI637CI (m+2) C₁₂H₃³⁵Cl₄³⁷Cl (m+2) 393.8 > 323.9 $C_{12}H_{3}^{35}Cl_{5}^{37}Cl_{2}$ (m+4) C₁₂H₃³⁵Cl₃³⁷Cl₂ (m+4) 395.8 > 325.9 OCB C₁₂H₂³⁵Cl₇³⁷Cl (m+2) C₁₂H₂³⁵Cl₅³⁷Cl (m+2) 427.8 > 357.8 $C_{12}H_2^{35}Cl_6^{37}Cl_2$ (m+4) $C_{12}H_3^{35}Cl_4^{37}Cl_2$ (m+4) 429.8 > 359.8 NCB C12H35Cl837Cl (m+2) C12H35Cl637Cl (m+2) 461.7 > 391.8 C₁₂H³⁵Cl₇³⁷Cl₂ (m+4) C12H35CI537CI2 (m+4) 463.7 > 393.8 DeCB $C_{12}^{35}Cl_8^{37}Cl_2$ (m+4) $C_{12}H^{35}Cl_{6}^{37}Cl_{2}$ (m+4) 497.7 > 427.7 C₁₂H³⁵Cl₇³⁷Cl₃ (m+6) C₁₂H³⁵Cl₅³⁷Cl₃ (m+6) 499.7 > 429.7 13C12-MCB ${}^{13}C_{12}H_{9}Cl(m)$ ${}^{13}C_{12}H_{9}(m)$ 200.1 > 165.1 ¹³C₁₂H₉³⁷Cl (m+2) ${}^{13}C_{12}H_{9}(m)$ 202.1 > 165.1 13C12-DiCB ${}^{13}C_{12}H_8CI_2$ (m) ¹³C₁₂H₈ (m) 234.0 > 164.1 ¹³C₁₂H₈³⁵Cl³⁷Cl (m+2) ¹³C₁₂H₈ (m) 236.0 > 164.1 13C12-TrCB ${}^{13}C_{12}H_7CI_3$ (m) ${}^{13}C_{12}H_7Cl(m)$ ${}^{13}C_{12}H_7{}^{35}CI_2{}^{37}CI (m+2)$ ${}^{13}C_{12}H_7Cl (m)$ 270.0 > 198.1 268.0 > 198.1 13C12-TeCB ${}^{13}C_{12}H_6CI_4(m)$ ${}^{13}C_{12}H_6CI_2(m)$ 301.9 > 232.0 ¹³C₁₂H₆³⁵Cl₃³⁷Cl (m+2) 13C12H635Cl37Cl (m+2) 304.0 > 234.0 13C12-PeCB ${}^{13}C_{12}H_5CI_5(m)$ ${}^{13}C_{12}H_5CI_3$ (m) 335.9 > 266.0 ${}^{13}C_{12}H_{5}{}^{35}Cl_{4}{}^{37}Cl (m+2)$ ¹³C₁₂H₅³⁵Cl₂³⁷Cl (m+2) 337.9 > 268.0 13C12-HxCB ${}^{13}C_{12}H_{4}{}^{35}CI_{5}{}^{37}CI(m+2)$ ¹³C₁₂H₄³⁵Cl₃³⁷Cl (m+2) ${}^{13}C_{12}H_4Cl_6(m)$ ${}^{13}C_{12}H_4Cl_4$ (m) 369.9 > 300.0 371.9 > 301.913C12-HpCB ${}^{13}C_{12}H_{3}{}^{35}Cl_{6}{}^{37}Cl(m+2)$ ¹³C₁₂H₃³⁵Cl₄³⁷Cl (m+2) 405.8 > 335.9 ${}^{13}C_{12}H_{3}{}^{35}CI_{5}{}^{37}CI_{2} (m+4)$ ¹³C₁₂H₃³⁵Cl₃³⁷Cl₂ (m+4) 407.8 > 337.9 13C12-OCB ${}^{13}C_{12}H_2{}^{35}CI_7{}^{37}CI(m+2)$ ¹³C₁₂H₂³⁵Cl₅³⁷Cl (m+2) ${}^{13}C_{12}H_2{}^{35}Cl_6{}^{37}Cl_2 (m+4)$ 441.8 > 371.9 439.8 > 369.9 ¹³C₁₂H₃³⁵Cl₄³⁷Cl₂ (m+4) 13C12-NCB ¹³C₁₂H³⁵Cl₈³⁷Cl (m+2) ¹³C₁₂H³⁵Cl₇³⁷Cl₂ (m+4) ¹³C₁₂H³⁵Cl₆³⁷Cl (m+2) 473.8 > 403.8 ¹³C₁₂H³⁵Cl₅³⁷Cl₂ (m+4) 475.8 > 405.813C12-DeCB ${}^{13}C_{12}{}^{35}Cl_{8}{}^{37}Cl_{2} (m+4)$ ¹³C₁₂H³⁵Cl₆³⁷Cl₂ (m+4) 509.7 > 439.8 ¹³C₁₂H³⁵Cl₇³⁷Cl₃ (m+6) ¹³C₁₂H³⁵Cl₅³⁷Cl₃ (m+6) 511.7 > 441.8

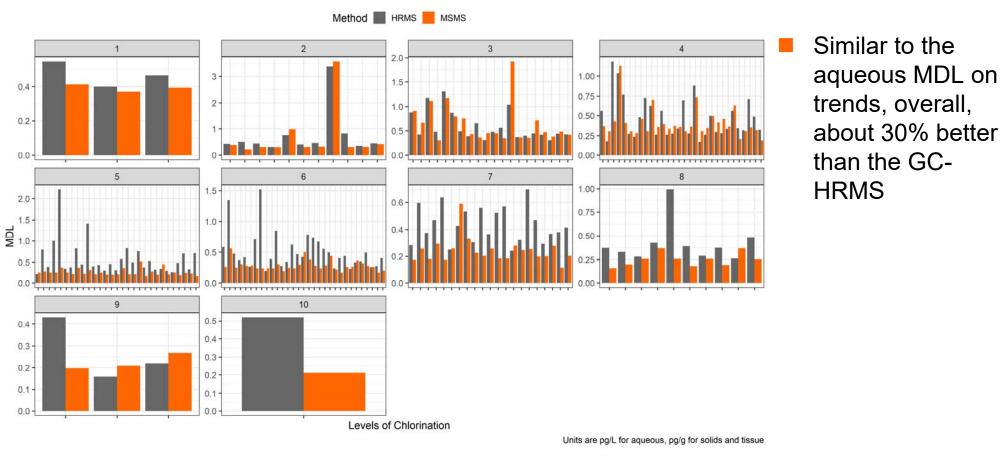
Quantitation based on

SGS AXYS CALIBRATION AND INITIAL VALIDATION

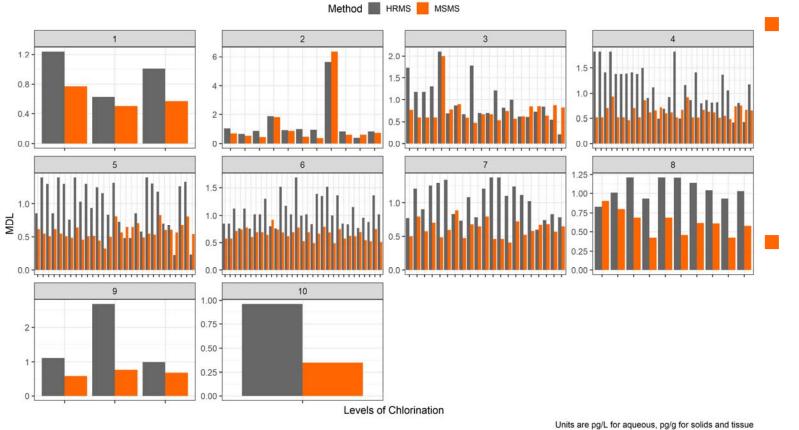


- Calibrations meet this linear range comfortably
- Initial validations with clean matrices for water, solids and tissue were routine, no issues encountered, met all 1668 specifications
- Methods currently accredited under ISO-17025 (CALA) and NELAP TNI (FI DOH)

SGS AXYS AQUEOUS MDL (PG/L)


Aqueous MDL

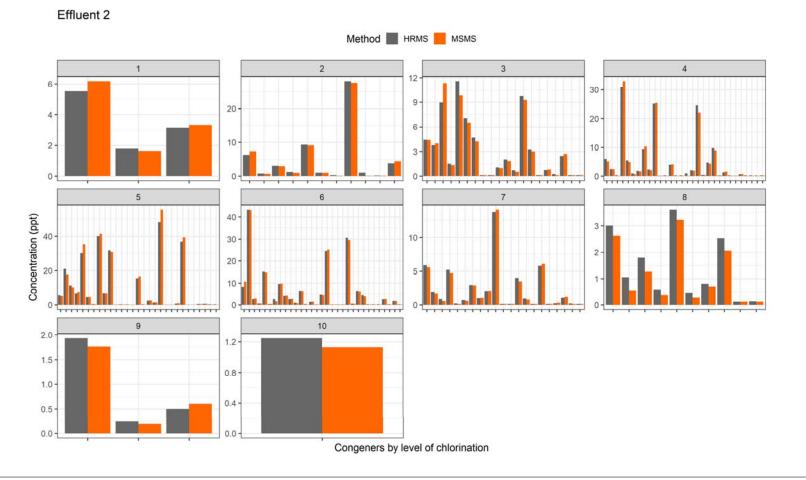
- Most PCBs, especially lower chlorinated (<Cl6) tend to be blank limited rather than sensitivity limited
- Superior instrument sensitivity evident Cl6 and onwards as background is less of a concern



Solid MDL

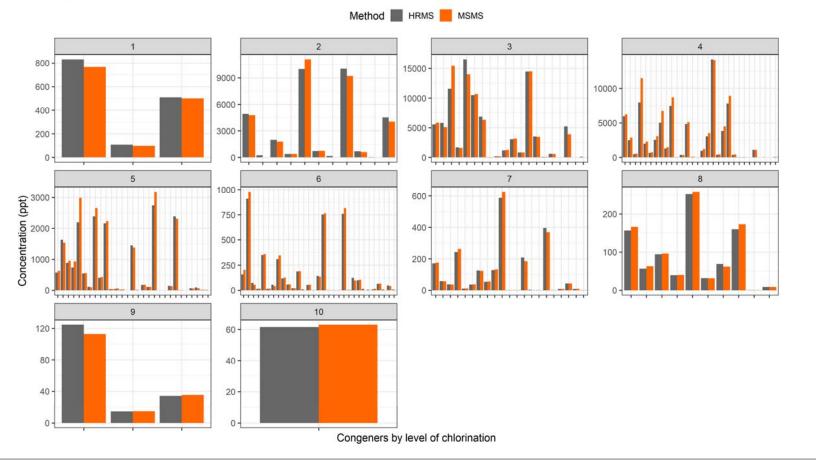
Tissue MDL

Tissue backgrounds are lower, so sensitivity improvements evident Cl4 onwards

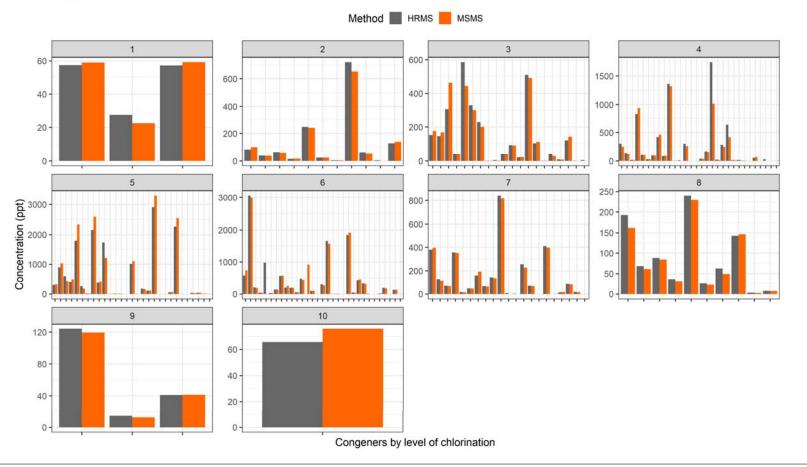

Ability to get actionable data from limited tissue sample key is a key differentiator

SGS AXYS PCB SAMPLE COMPARISONS

Matrix	#
WWTP Influent	2
WWTP Effluent	2
WWTP biosolids	1
Whale poop	1
Tissue	2
Serum	2

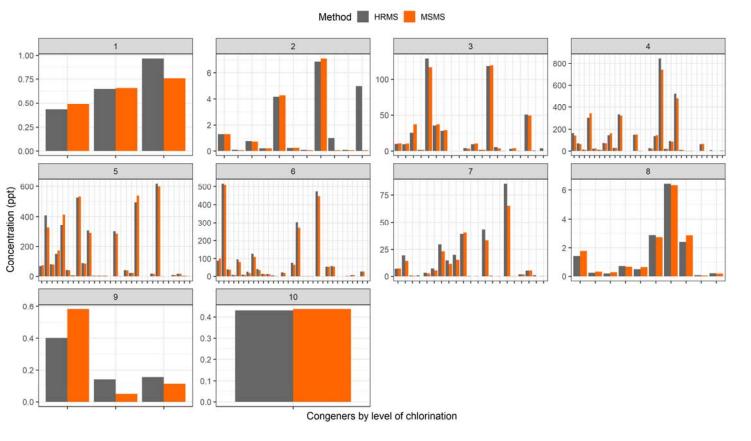

- Pick sample extracts within the past year extracted by EPA method 1668 GC-HRMS
- Re-run extracts by GC-MS/MS
- Except extract hold time, all other factors identical

SGS AXYS COMPARATIVE DATA – EFFLUENT EXAMPLE



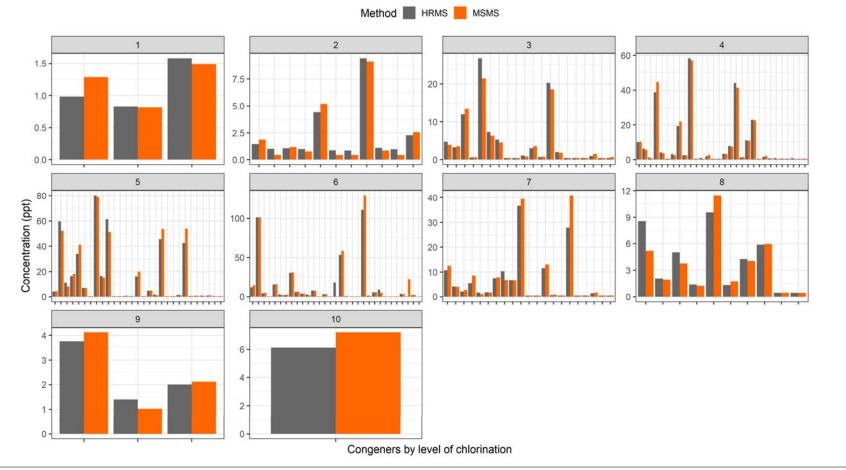
Influent 2

Biosolid 1

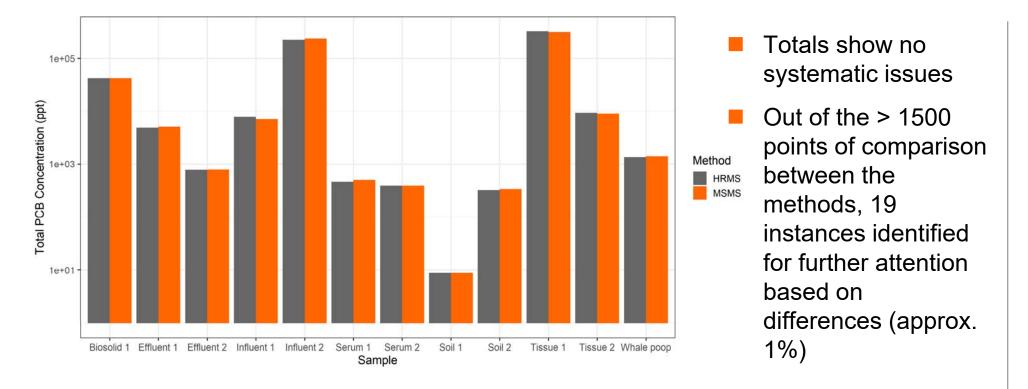


Slide 21

CB(1 Chandramouli, Bharat (Sidney), 8/12/2020



Tissue 2



Whale poop

SGS AXYS PCB COMPARISON – INITIAL TAKEAWAYS

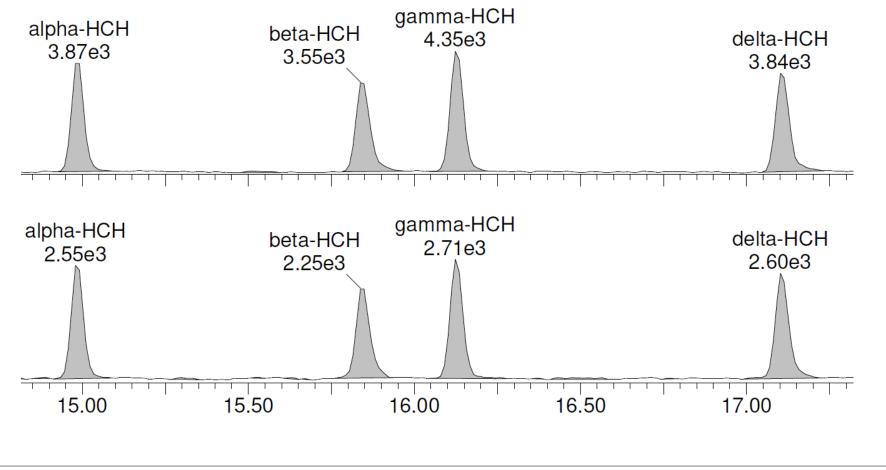
SGS AXYS CHLORINATED PESTICIDES

- Long standing internal method initially converted from GC-LRMS and GC-ECD to GC-HRMS in order to provide better data on challenging samples
- Specificity of GC-HRMS compensates for interferences that would not be resolved otherwise
- Issues with GC-HRMS method
 - Large m/z scanning range not optimal for magnetic sector instrument
 - Need two separate runs in order to produce acceptable data
- Objective: GC-MS/MS method that measures all chlorinated pesticides in one run with better sensitivity and better performance on challenging samples and sample-limited projects

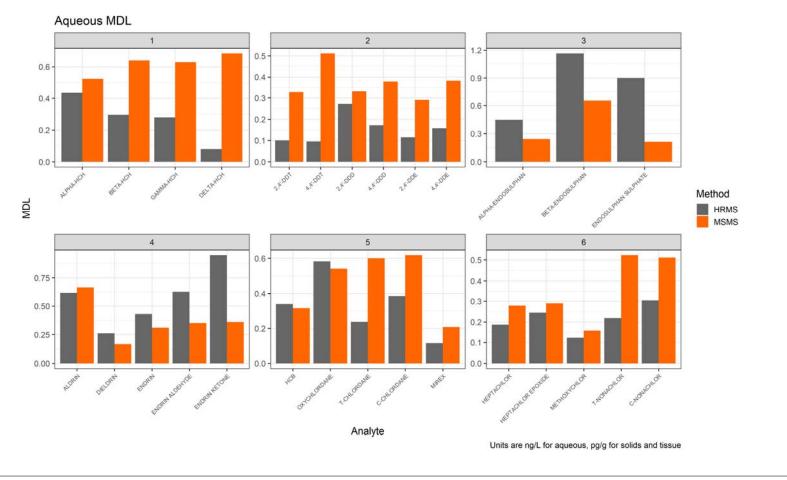
SGS AXYS PESTICIDE TARGET LIST

1	2	3	4	5	6	
ALPHA-HCH	2,4'-DDT	ALPHA-Endosulphan	Aldrin	НСВ	Heptachlor	
BETA-HCH	4,4'-DDT	BETA-Endosulphan	Dieldrin	Oxychlordane	Heptachlor epoxide	
GAMMA-HCH	2,4'-DDD	Endosulphan sulphate	Endrin	Trans- Chlordane	Methoxychlor	
DELTA-HCH	4,4'-DDD		Endrin aldehvde	Cis-Chlordane	Trans-Nonachlor	
	2,4'-DDE		Endrin ketone	Mirex	Cis-Nonachlor	
 Also validated several other targets including di, tri, tetra and pentachlorobenzenes, hexachlorobutadiene, octachlorostyrene oxadiazon and dacthal 						

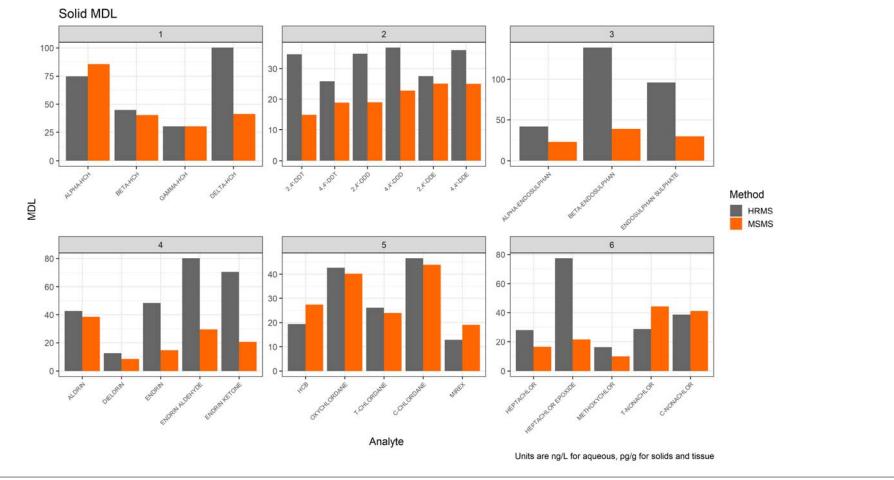
SGS AXYS SAMPLE PREPARATION AND GC DEVELOPMENT

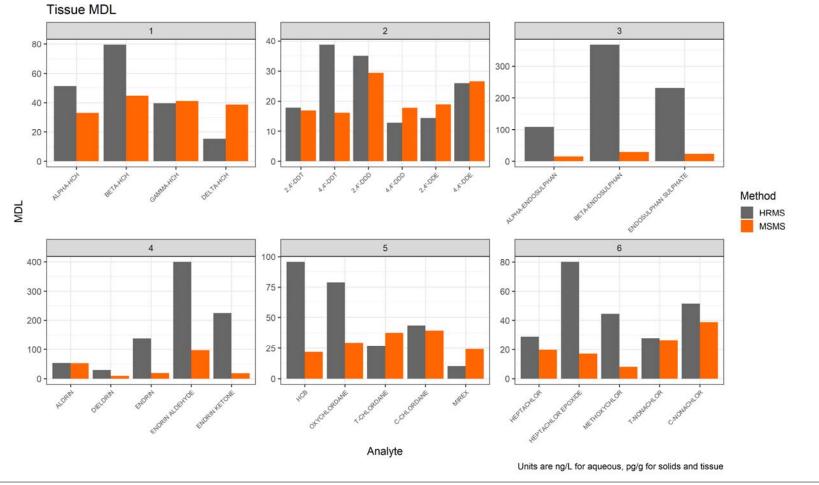

- New development to combine two run program into 1 run
- Eliminated florisil fractionation
- DB-5MS column 32 minute run more than doubling current throughput
- Splitless injection for maximum sensitivity
- Endrin and DDT breakdown equivalent to GC-HRMS
- Methods currently accredited under ISO-17025 (CALA) and NELAP TNI (FI DOH)

SGS AXYS MS/MS DEVELOPMENT

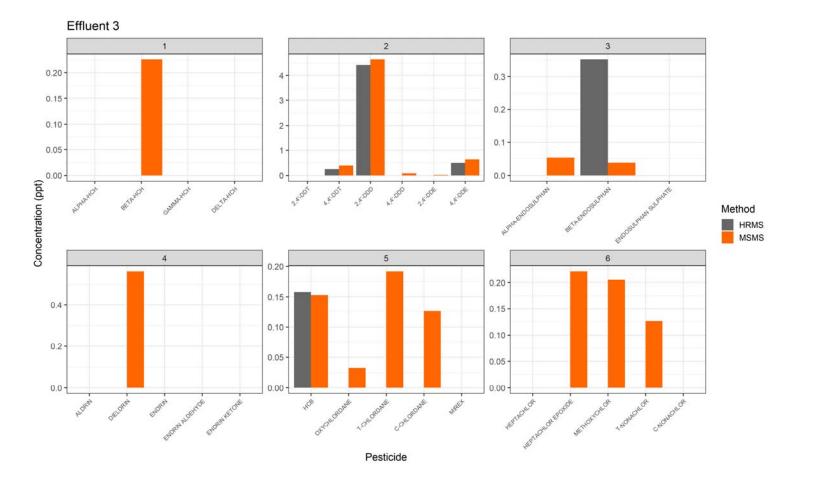

- Optimization of source parameters, pesticides don't ionize like PCBs or dioxins
- Just as in PCBs, all new development for two precursor -> product transitions per analyte based on chlorine isotope differences
- Ratio checks against theoretical
- Same procedure for lock mass checks and resolution checks

SGS AXYS PESTICIDE SENSITIVITY AT LOWEST CALIBRATION

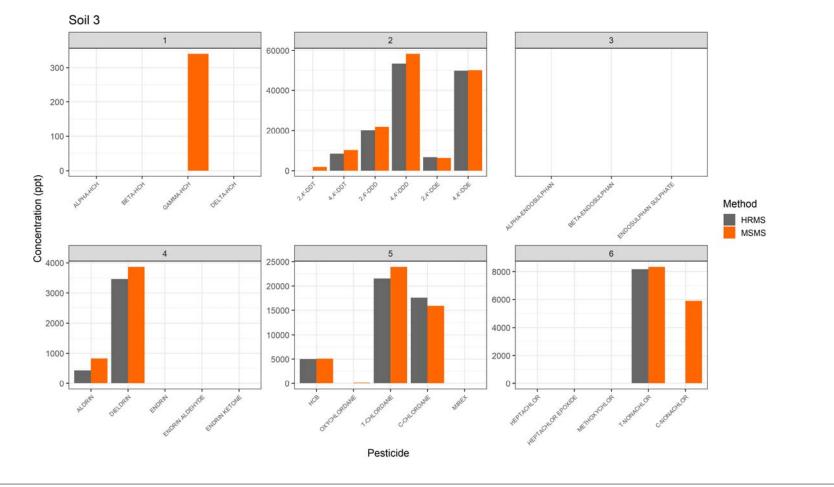




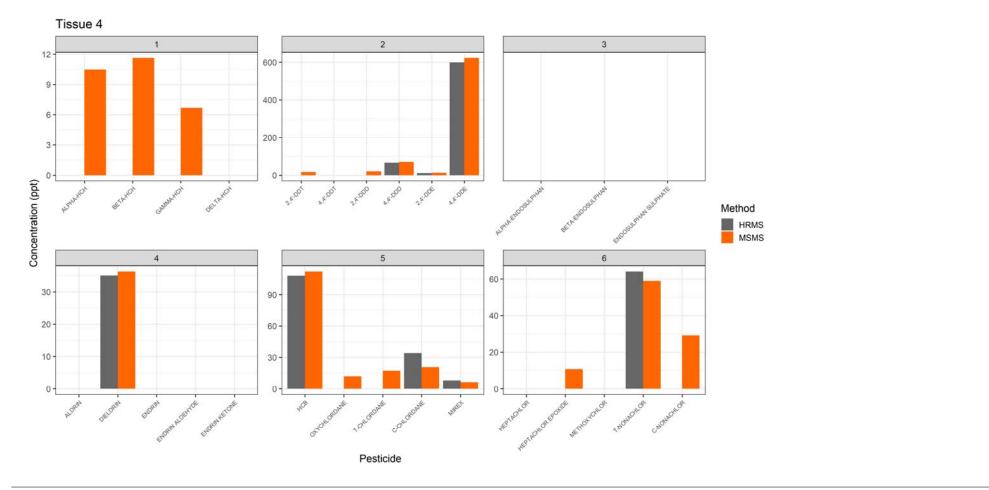
30

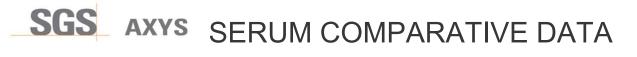


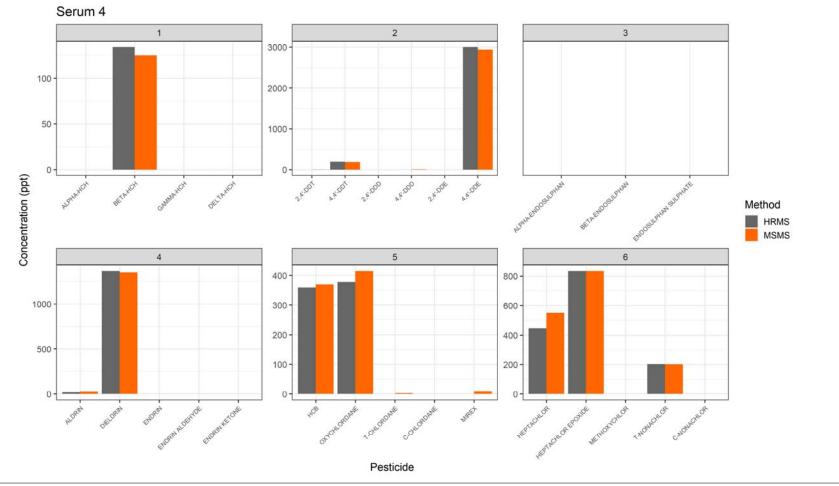
PESTICIDE COMPARISON SAMPLES

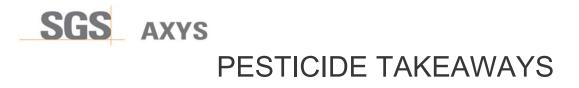

Sample Type	#
WWTP Effluent	1
Soil	3
Tissue	3
Serum	2

- Again based on extracts from GC-HRMS projects
- Extracts from two GC-HRMS runs were combined and reanalyzed using GC-MS/MS









[©] SGS SA 2018 All Rights Reserved

- Excellent correlation with GC-HRMS results
- Instrument is more sensitive, meaning smaller sample sizes can be used
- Initial sample testing indicates promise on robustness
- More challenging samples needed to really test the instruments (don't let our operations team hear this ⁽ⁱ⁾)

SGS AXYS OVERALL PROGNOSIS

- Instrument has performed very well
- Initial use cases are non-regulatory projects with limited sample and multiple analyses – Dioxins, PCBs and Pesticides from 2g of tissue!
- ATP approval from EPA showing equivalency for dioxins will also increase acceptance for PCBs and pesticide analysis

SGS AXYS ACKNOWLEDGEMENTS

- Waters: Joe Romano and Rhys Jones for great technical expertise
- EPA: Lem Walker
- SGS AXYS Senior Scientist Coreen Hamilton: The brains
- SGS AXYS Senior Chemists Xinhui Xie, Angie Schlak and Jason Mackenzie